Essential for comprehensive and sustainable watershed management is the need to understand interactions between climate change predictions and landuse modifications in concert on ecohydrology. The Atlantic Canada region is expected to experience elevated rainfall due to climate change over the next century. We undertook a predictive modeling study of a watershed in rural Nova Scotia, Thomas Brook, to investigate the potential of riparian reforestation to mitigate the deleterious environmental effects projected to occur from future climate change. A Watershed Analysis Risk Management Framework (WARMF) model was used to predict increased watershed flows using data from projections of the Canadian Regional Climate Change Model. The cold climate-validated WARMF model, which has been used previously to simulate surface flow hydrology in many agricultural and mixed-use landscapes, was found to predict increases of 9% to 25% in flow for the Thomas Brook watershed throughout the rest of the century. A spatial, exposure-based model, used previously in several studies, was adopted for assessing changes in surface water vulnerability based on GIS land-use and landscape topography estimates of nutrient loading, sedimentation, runoff, wetland loss, and stream geomorphology. This model indicated that increases in drainage intensity and drainage sensitivity expected through the climate change WARMF model resulted in greater proportions (from 5% to 27%) of the Thomas Brook watershed area being classified as "High vulnerability" for impacting surface water quality. In terms of land use planning, implementation of runoff and How to cite this paper: France, R. L., & Aitchison, P. W.