An original signal processing algorithm is presented to automatically extract, on a stride-by-stride basis, four consecutive fundamental events of walking, heel strike (HS), toe strike (TS), heel-off (HO), and toe-off (TO), from wireless accelerometers applied to the right and left foot. First, the signals recorded from heel and toe three-axis accelerometers are segmented providing heel and toe flat phases. Then, the four gait events are defined from these flat phases. The accelerometer-based event identification was validated in seven healthy volunteers and a total of 247 trials against reference data provided by a force plate, a kinematic 3D analysis system, and video camera. HS, TS, HO, and TO were detected with a temporal accuracy ± precision of 1.3 ms ± 7.2 ms, -4.2 ms ± 10.9 ms, -3.7 ms ± 14.5 ms, and -1.8 ms ± 11.8 ms, respectively, with the associated 95% confidence intervals ranging from -6.3 ms to 2.2 ms. It is concluded that the developed accelerometer-based method can accurately and precisely detect HS, TS, HO, and TO, and could thus be used for the ambulatory monitoring of gait features computed from these events when measured concurrently in both feet.