Fullerenes are a unique family of carbon-based cage molecules, which attract interest because of their remarkable properties and potential applications. Most effort so far has been focused on the study of C 60 and C 70 , whereas other members of the huge fullerene family remain poorly explored. One of the main challenges in this field is the developing of the synthetic methods, which are suitable for the production of these unique materials in isomer-pure form in macroscopic amounts. Here, we review studies toward the rational synthesis of fullerenes from molecular precursors that have been published to date. The scope and limitation of the zipping strategy are discussed. The relevance and prospects for construction of the fullerene cages and related carbon-based nanostructures via cyclodehydrofluorination (C─F bond activation) are highlighted.