Culex mosquitoes are a globally widespread vector of several human and animal pathogens. Their biology and behavior allow them to thrive in proximity to urban areas, rendering them a constant public health threat. Their mixed bird/mammal feeding behavior further offers a vehicle for zoonotic pathogens transmission to people, and separately, poses a conservation threat to insular bird species. The advent of CRISPR has led to the development of novel technologies for the genetic engineering of wild mosquito populations, yet research in Culex has been lagging compared to other disease vectors, with only a few reports testing the functionality of CRISPR in these species. Here we use this tool to disrupt a set of five pigmentation genes in Culex quinquefasciatus that when altered, lead to visible, homozygous-viable phenotypes. We further validate our approach on two distinct strains of Culex quinquefasciatus that are relevant to potential future public health and bird conservation applications. Lastly, we generate a double-mutant line, demonstrating the possibility of combining multiple such mutations in a single individual. Our work provides a platform of five validated loci that could be used for targeted mutagenesis for research in Culex quinquefasciatus aimed at the development of genetic suppression strategies for this species. Furthermore, the mutant lines generated here could have widespread utility to the research community using this model organism, as they could be used as targets for transgene delivery, where a copy of the disrupted gene could be included as an easily-scored transgenesis marker.