Abstract. In the study main factors influencing the exploitative durability of the aluminum radiators used in motorization were classified. Special attention was put to thermal strains occurring during the usage of a car. The causes of theirs formation were identified, including disproportionate distribution of temperature in the construction of radiator, which changes cyclically depending on the characteristics of cooling fluid flow. In order to evaluate the influence of temperature and deformations of radiators on their durability, resistance tensometry method was used supplemented with temperature measurements with the use of thermoelements. Three linear resistive tensometers and three thermoelements were placed in the key areas of radiator (the inlet and outlet of cooling liquid to the heat exchanger and separator of the areas). Measurements were carried out during the examination of the durability of radiators on thermal shocks, which is one of the most basic examinations that imitates conditions of their work and verifies mechanical durability of products. Critical areas in the radiator were located, which are the most vulnerable to damages, including cracks. After the conducted research measurements of tightness were carried out, which verification is one of the most important requirements set for products in contact with intermediary medium in heat exchange. The study was supplemented with the observation of metallographic structures of the areas of fatigue cracks.