The University of Western Australia invested significant funding to develop and test new technologies for student learning using the internet, including a substantial investment in remote access laboratories. Over 15 years of operation, some significant limiting factors have become apparent. The technology has not been widely adopted, either in our own faculty or elsewhere. Nearly all engineering laboratory classes still follow traditional patterns, as do lecture and tutorial classes. Therefore it is worth asking why the adoption of such an apparently attractive technology has been so much slower than expected. To answer this question we started a project to understand more about the practical learning outcomes from traditional laboratory classes. When we applied tools from psychologists to measure practical intelligence in an electronics laboratory class, we not only found we could measure a significant gain in hands-on practical intelligence, but also predict students’ ability to diagnose equipment faults. For the first time, therefore, we can demonstrate that there are real advantages inherent in hands-on laboratory classes, and we can measure this advantage. It is possible that measurements of practical intelligence may reveal new and more powerful ways for students to acquire practical knowledge and skills from remote laboratories as well.
The learning domains such as cognitive, affective and psychomotor for Engineering Technology programs should be identified and valued. The acquisition of hands-on experience in workplace settings and laboratory classes is just as important as explicit technical knowledge, and should be measured in psychomotor domain. However, the explicit knowledge is valued in engineering technology education. Furthermore, practically all assessments measure cognitive value. This implicit devaluation of hands-on experience could significantly impair engineering technology students’ ability to acquire and value practical skills. Therefore, developing a new model to include effective assessment in psychomotor domain could be one way to overcome this problem. Thus, the aim of this project is to find ways to measure changes in hands-on experience in engineering laboratory classes. The second aim is to test the relationship between hands-on experiences acquired in laboratory classes with the ability to diagnose simple experiment faults in laboratory arrangements. The method of think-aloud is used in the research where the finding of students’ attainment is compared to experts’ acquisition. The results show that the value of psychomotor domain in laboratory classes via hands-on experience can be assessed and valued between two groups of students which is experiment and control group. Methodologies and detail results for this research are described in this project.
Practical intelligence is often referred to as the ability of a person to solve practical challenges in a given domain. The lack of practical intelligence may be due to the way in which explicit knowledge is valued and subsequently assessed in engineering education, namely via examinations, tests, laboratory reports, and tutorial exercises. The lack of effective assessments on practical intelligence indicates implicit devaluation, which can significantly impair engineering students' ability to acquire practical intelligence. To solve this problem, the authors propose a new method of assessment for measuring practical intelligence acquired by engineering students after performing engineering laboratory classes. The novices-experts approach is used in designing the assessment instruments, based on the behaviors' of novices/experts observed and novices/experts representative work-related situations. The practical intelligence can be measured by calculating the difference between participants' and the experts' ratings; the closer the novices to experts, the higher the practical intelligence acquired.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.