The reaction of monomeric [(Tp(tBu,Me) )LuMe2 ] (Tp(tBu,Me) =tris(3-Me-5-tBu-pyrazolyl)borate) with primary aliphatic amines H2 NR (R=tBu, Ad=adamantyl) led to lutetium methyl primary amide complexes [(Tp(tBu,Me) )LuMe(NHR)], the solid-state structures of which were determined by XRD analyses. The mixed methyl/tetramethylaluminate compounds [(Tp(tBu,Me) )LnMe({μ2 -Me}AlMe3 )] (Ln=Y, Ho) reacted selectively and in high yield with H2 NR, according to methane elimination, to afford heterobimetallic complexes: [(Tp(tBu,Me) )Ln({μ2 -Me}AlMe2 )(μ2 -NR)] (Ln=Y, Ho). X-ray structure analyses revealed that the monomeric alkylaluminum-supported imide complexes were isostructural, featuring bridging methyl and imido ligands. Deeper insight into the fluxional behavior in solution was gained by (1) H and (13) C NMR spectroscopic studies at variable temperatures and (1) H-(89) Y HSQC NMR spectroscopy. Treatment of [(Tp(tBu,Me) )LnMe(AlMe4 )] with H2 NtBu gave dimethyl compounds [(Tp(tBu,Me) )LnMe2 ] as minor side products for the mid-sized metals yttrium and holmium and in high yield for the smaller lutetium. Preparative-scale amounts of complexes [(Tp(tBu,Me) )LnMe2 ] (Ln=Y, Ho, Lu) were made accessible through aluminate cleavage of [(Tp(tBu,Me) )LnMe(AlMe4 )] with N,N,N',N'-tetramethylethylenediamine (tmeda). The solid-state structures of [(Tp(tBu,Me) )HoMe(AlMe4 )] and [(Tp(tBu,Me) )HoMe2 ] were analyzed by XRD.