We study compact complex 3-manifolds M admitting a (locally homogeneous) holomorphic Riemannian metric g. We prove the following: (i) If the Killing Lie algebra of g has a non trivial semi-simple part, then it preserves some holomorphic Riemannian metric on M with constant sectional curvature; (ii) If the Killing Lie algebra of g is solvable, then, up to a finite unramified cover, M is a quotient \G, where is a lattice in G and G is either the complex Heisenberg group, or the complex SO L group.