Abstract. (Lorentz geometries in dimension 3: completeness and classification). We study 3-dimensional non-Riemannian Lorentz geometries, i.e. compact locally homogeneous Lorentz 3-manifolds, with non-compact (local) isotropy group. One result is that, up to a finite cover, all such manifolds admit Lorentz metrics of (non-positive) constant sectional curvature. In fact, if the geometry is maximal, then, there is a tri-chotomy. The metric has constant sectionnal curvature, or is a left invariant metric on the Heisenberg group or the SOL-group. These geometries, on each of the latter two groups are characterized by having a non-compact isotropy without being flat. Recall, for the need of his formulation of the geometrization conjecture, W. Thurston counted the 8 maximal Riemannian geometries in dimension 3. Here, we count only 4 maximal Lorentz geometries, but ignoring those which are at the same time Riemannian. Also, all such manifolds are geodesically complete, except the previous non flat left invariant metric on the SOL-group.
We study holomorphic geometric structures on compact complex manifolds. We show that, contrary to the situation in the real domain, a holomorphic geometric structure on a compact complex manifold usually admits a "big" pseudogroup of local isometries. We exhibit very general conditions which imply that the pseudogroup of local isometries acts transitively. 2001 Éditions scientifiques et médicales Elsevier SAS RÉSUMÉ.-Nous étudions les structures géométriques holomorphes sur les variétés complexes compactes. Nous montrons que, contrairement au cas réel, une telle structure possède souvent un « grand » pseudogroupe d'isométries locales. Nous exhibons des conditions très générales qui garantissent l'existence d'une action transitive du pseudogroupe des isométries locales.
We introduce the concept of a branched holomorphic Cartan geometry. It generalizes to higher dimension the definition of branched (flat) complex projective structure on a Riemann surface introduced by Mandelbaum [Ma1]. This new framework is much more flexible than that of the usual holomorphic Cartan geometries. We show that all compact complex projective manifolds admit a branched flat holomorphic projective structure. We also give an example of a non-flat branched holomorphic normal projective structure on a compact complex surface. It is known that no compact complex surface admits such a structure with empty branching locus. We prove that non-projective compact simply connected Kähler Calabi-Yau manifolds do not admit any branched holomorphic projective structures. The key ingredient of its proof is the following result of independent interest: If E is a holomorphic vector bundle over a compact simply connected Kähler Calabi-Yau manifold, and E admits a holomorphic connection, then E is a trivial holomorphic vector bundle, and any holomorphic connection on E is trivial.
Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ MÉTRIQUES RIEMANNIENNES HOLOMORPHES EN PETITE DIMENSION par Sorin DUMITRESCU 1. Introduction. Une métrique riemannienne holomorphe sur une variété complexe est un champ holomorphe de formes quadratiques (complexes) non dégénérées sur le fibré holomorphe tangent à la variété. Il convient d'envisager une telle métrique comme l'analogue complexe d'une métrique pseudo-riemannienne. En effet, de manière analogue à la géométrie pseudo-riemannienne, à une métrique riemannienne holomorphe il est associé une unique connexion (holomorphe) de Levi-Civita, des courbes géodésiques (les géodésiques sont des courbes holomorphes dont le vecteur tangent est parallèle) et un tenseur de courbure. L'exemple canonique est la métrique (plate) q = dzf + dz2 + ... + dz 2 sur l'espace en. La métrique q est invariante par les translations et passe au quotient définissant une métrique holomorphe sur tout tore complexe de dimension n. Contrairement à la géométrie riemannienne réelle l'existence d'une métrique riemannienne holomorphe sur une variété complexe compacte n'est nullement assurée. Elle impose même des conditions très restrictives à la variété. Mots-clés : Variétés complexes-Métriques riemanniennes holomorphes-Théorie algébrique des invariants-Pseudo-groupe d'isométries locales. Classification math. : 53B21-53C56-53A55.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.