Background: SNARE proteins play a vital
role in
membrane fusion and cellular physiology and pathological processes.
Many potential therapeutics for mental diseases or even cancer based
on SNAREs are also developed. Therefore, there is a dire need to predict
the SNAREs for further manipulation of these essential proteins, which
demands new and efficient approaches. Methods: Some
computational frameworks were proposed to tackle the hurdles of biological
methods, which take plenty of time and budget to conduct the identification
of SNAREs. However, the performances of existing frameworks were insufficiently
satisfied, as they failed to retain the SNARE sequence order and capture
the mass hidden features from SNAREs. This paper proposed a novel
model constructed on the multiscan convolutional neural network (CNN)
and position-specific scoring matrix (PSSM) profiles to address these
limitations. We employed and trained our model on the benchmark dataset
with fivefold cross-validation and two different independent datasets. Results: Overall, the multiscan CNN was cross-validated
on the training set and excelled in the SNARE classification reaching
0.963 in AUC and 0.955 in AUPRC. On top of that, with the sensitivity,
specificity, accuracy, and MCC of 0.842, 0.968, 0.955, and 0.767,
respectively, our proposed framework outperformed previous models
in the SNARE recognition task. Conclusions: It is
truly believed that our model can contribute to the discrimination
of SNARE proteins and general proteins.