In cellular transportation mechanisms, the movement of ions across the cell membrane and its proper control are important for cells, especially for life processes. Ion transporters/pumps and ion channel proteins work as border guards controlling the incessant traffic of ions across cell membranes. We revisited the study of classification of transporters and ion channels from membrane proteins with a more efficient deep learning approach. Specifically, we applied multi‐window scanning filters of convolutional neural networks on almost full‐length position‐specific scoring matrices for extracting useful information. In this way, we were able to retain important evolutionary information of the proteins. Our experiment results show that a convolutional neural network with a minimum number of convolutional layers can be enough to extract the conserved information of proteins which leads to higher performance. Our best prediction models were obtained after examining different data imbalanced handling techniques, and different protein encoding methods. We also showed that our models were superior to traditional deep learning approaches on the same datasets as well as other machine learning classification algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.