This paper is dedicated to the mathematical analysis of an axisymmetric, steady Newtonian fluid flow through a horizontal pipe within the occurrence of radiation, Dufour, and Soret effects. The flow is exposed to associate outwardly functional constant suction above the pipe along Z-direction. The homotopy analysis methodology (HAM) is utilized to get semi-analytical solutions for the coupled differential equations. The results of diverse rising constraints on velocities, thermal and solutal are discussed and pictured. The flow is studied through streamlines, isotherms and pressure contours area unit likewise shown as pictured. It is identified that the temperature can increase with an increase in Dufour parameter but decelerates with an improvement in the radiation parameter. For the given increase within the Soret number, the concentration decelerates.