The thermosolutal instability of double-diffusive convection in an inclined fluid-saturated porous layer with a concentration-based internal heat source is investigated. The linear instability of small-amplitude perturbations to the system is analyzed with respect to transverse and longitudinal rolls. The resultant eigenvalue problem is solved numerically utilizing the Chebyshev tau method. It is shown that an increasing inclination angle causes a strong stabilization in the transverse rolls irrespective of the internal heat source or vertical solutal Rayleigh number. Furthermore, substantial qualitative changes are demonstrated in the linear instability thresholds with variations in the inclination angle and concentration-based heat source.
A theoretical steady of two-dimensional and MHD couple stress fluid flow over a linearly stretching sheet is investigated with the effects of thermal radiation, internal heat generation and homogeneous chemical reaction of first order. The governing equations of continuity, momentum, energy and diffusion for this boundary layer flow are transformed into one set of coupled non-linear ordinary differential equations using the local similarity transformation and are then solved using the fourth-order Runge-Kutta method along with the shooting technique. The effects of the couple stress parameter (S), Magnetic parameter (M ) and chemical reaction parameter (Cr) are presented through the graphical illustrations. It has been found from the results that the temperature of the couple stress fluid is enhanced due to increases in P r, Ec, M and Q but decreased with R and S. Increase in the couple stress parameter (S) enhances the flow velocity but enhance in the magnetic field (M ) reduces the flow velocity.
The influence of cross diffusions, Hall and Ion slip of a dissipative magnetized micropolar fluid flow through an infinite concentric rotating vertical cylinders were investigated in addition to the first order chemical reaction. Cylinders are taken into account for Isothermal (constant temperature wall condition) and mixed gradient condition at inner cylinder, while convection cooling and constant wall concentration condition is taken at outer cylinder. The governing equations in cylindrical polar coordinates are coupled ordinary differential equations (ODEs) and are solved numerically with help of Shooting method with fourth order Runge Kutta method. A parametric study illustrating the influence of the emerging parameters on flow, heat and mass transfer components as well as on Skin Friction, Nusselt number and Sherwood number through graphical illustrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.