Neurodegenerative and infectious disorders including Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, and stroke are rapidly increasing as population's age. Alzheimer's disease alone currently affects 4.5 million Americans, and more than $100 billion is spent per year on medical and institutional care for affected people. Such numbers will double in the ensuing decades. Currently disease diagnosis for all disorders is made, in large measure, on clinical grounds as laboratory and neuroimaging tests confirm what is seen by more routine examination. Achieving early diagnosis would enable improved disease outcomes. Drugs, vaccines or regenerative proteins present "real" possibilities for positively affecting disease outcomes, but are limited in that their entry into the brain is commonly restricted across the blood-brain barrier. This review highlights how these obstacles can be overcome by polymer science and nanotechnology. Such approaches may improve diagnostic and therapeutic outcomes. New developments in polymer science coupled with cell-based delivery strategies support the notion that diseases that now have limited therapeutic options can show improved outcomes by advances in nanomedicine.