Arrays of electrodes for recording and stimulating the brain are used throughout clinical medicine and basic neuroscience research, yet are unable to sample large areas of the brain while maintaining high spatial resolution because of the need to individually wire each passive sensor at the electrode-tissue interface. To overcome this constraint, we have developed new devices integrating ultrathin and flexible silicon nanomembrane transistors into the electrode array, enabling new dense arrays of thousands of amplified and multiplexed sensors connected using many fewer wires. We used this system to record novel spatial properties of brain activity in vivo, including sleep spindles, single-trial visual evoked responses, and electrographic seizures. Our electrode array allowed us to discover that seizures may manifest as recurrent spiral waves which propagate in the neocortex. The developments reported here herald a new generation of diagnostic and therapeutic brain-machine interface (BMI) devices.
KeywordsMultielectrode array; electrode array; flexible electronics; multiplexed electrode; cortical surface electrode; foldable electrode; ECoG; μECoG; brain machine interface; high temporal resolution; high spatial resolution; spindle; visual neuroscience; spiral wave; epilepsy; seizure; epileptiform spike; interhemispheric fissure; silicon nanoribbonThe utility of high-resolution neural recordings from the cortical surface for basic research and clinical medicine has been shown for a wide range of applications. Spatial spectral analysis of electrocorticograms (ECoG) from the superior temporal gyrus and motor cortex demonstrate that electrode spacing should be 1.25 mm or closer in humans to sufficiently capture the rich spatial information available 1 . Motor control signals 2 and spoken words 3 can be decoded with substantially improved performance utilizing electrodes spaced 1 mm apart or less. In occipital cortex, arrays with 500 μm spacing have demonstrated micro-field evoked potentials that can distinguish ocular dominance columns 4 . The spatial scale for some pathologic signals is also submillimeter, based on observations of microseizures, microdischarges and high frequency oscillations in epileptic brain 5,6 .Yet the subdural electrodes in use clinically, for example, in the diagnosis and treatment of epilepsy, are much larger (~3 mm diameter) and have large interspacing (~10mm) because of the clinical need to record from large areas of the brain surface (80 mm × 80 mm) in order to accurately localize seizure generating brain regions. Large area electrode arrays with high spatial resolution are also needed in BMI applications to account for variability in the location of brain functions, which can vary by ~5mm across subjects [7][8][9][10] . High-resolution interface over a large area has previously been impossible due to the infeasibility of connecting thousands of wires in the small intracranial space.
Author Manuscript Author ManuscriptAuthor Manuscript
Author ManuscriptMuch of the existing researc...