2020
DOI: 10.1016/j.compbiomed.2020.103995
|View full text |Cite
|
Sign up to set email alerts
|

Microaneurysm detection in color eye fundus images for diabetic retinopathy screening

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
13
0
2

Year Published

2022
2022
2024
2024

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 43 publications
(15 citation statements)
references
References 41 publications
0
13
0
2
Order By: Relevance
“…Wankhede, K. B. Khanchandani [ 193 ] 2020 DIARETDB1 E-optha MA Pixel Intensity Rank Transform DIARETDB1 98.79%, E-optha MA 94.59% DIARETDB1 83.33% E-optha MA 96.56% DIARETDB1 97.75% E-optha MA 95.80% D. Jeba Derwin et al [ 42 ] 2020 ROC Single real- time, AGAR300 Local Neighborhood Differential Coherence Pattern (LNDCP) For ROC and AGAR300, FROC scores of 0.481 and 0.442 were attained, respectively. Tania Melo et al [ 119 ] 2020 ROC e-ophtha SCREEN-DR Messidor Sliding band filter (SBF) At the lesion level, e-ophtha- 64% SCREEN-DR- 81% Train dataset ROC- 0.716 e-ophtha MA- 0.792 SCREEN-DR- 0.831 Shengchun Long et al [ 110 ] 2019 e-ophtha MA and DIARETDB1 Directional Local Contrast (DLC) FROC Score e-ophtha MA 0.374 DIARETDB1 0.210 e-ophtha MA 0.87 and DIARETDB1 0.86 Amrita Roy Chowdhury et al [ 35 ] 2019 DIARETDB1, Teleoptha, Messidor Naïve Bayes classifier, Random Forest classifier, K-means clustering Random Forest classifier- 93.58% Naïve Bayes classifier- 83.63% Shailesh Kumar, Basant Kumar [ 96 ] 2018 DIARETDB1 PCA, CLAHE, Averaging filter, SVM 96% 92% Jose Ignacio Orlando et al [ 134 ] 2018 DIARETDB1, e-optha, Messidor CNN using handcrafted elements, Random Forest classifier 97.2% 93.4% Diana Veiga et al [ 183 ] ...…”
Section: Dr Screening Methodsmentioning
confidence: 99%
“…Wankhede, K. B. Khanchandani [ 193 ] 2020 DIARETDB1 E-optha MA Pixel Intensity Rank Transform DIARETDB1 98.79%, E-optha MA 94.59% DIARETDB1 83.33% E-optha MA 96.56% DIARETDB1 97.75% E-optha MA 95.80% D. Jeba Derwin et al [ 42 ] 2020 ROC Single real- time, AGAR300 Local Neighborhood Differential Coherence Pattern (LNDCP) For ROC and AGAR300, FROC scores of 0.481 and 0.442 were attained, respectively. Tania Melo et al [ 119 ] 2020 ROC e-ophtha SCREEN-DR Messidor Sliding band filter (SBF) At the lesion level, e-ophtha- 64% SCREEN-DR- 81% Train dataset ROC- 0.716 e-ophtha MA- 0.792 SCREEN-DR- 0.831 Shengchun Long et al [ 110 ] 2019 e-ophtha MA and DIARETDB1 Directional Local Contrast (DLC) FROC Score e-ophtha MA 0.374 DIARETDB1 0.210 e-ophtha MA 0.87 and DIARETDB1 0.86 Amrita Roy Chowdhury et al [ 35 ] 2019 DIARETDB1, Teleoptha, Messidor Naïve Bayes classifier, Random Forest classifier, K-means clustering Random Forest classifier- 93.58% Naïve Bayes classifier- 83.63% Shailesh Kumar, Basant Kumar [ 96 ] 2018 DIARETDB1 PCA, CLAHE, Averaging filter, SVM 96% 92% Jose Ignacio Orlando et al [ 134 ] 2018 DIARETDB1, e-optha, Messidor CNN using handcrafted elements, Random Forest classifier 97.2% 93.4% Diana Veiga et al [ 183 ] ...…”
Section: Dr Screening Methodsmentioning
confidence: 99%
“…Melo et al [ 5 ] used a sliding band filter for MA enhancement and they also used the filter response and the salience of the candidate area for classification. Antal and Hajdu [ 6 ] proposed an ensemble-based framework for MA detection; they selected the optimal results under different preprocessing and candidate extraction methods.…”
Section: Related Workmentioning
confidence: 99%
“…The current mainstream MA detection algorithm [ 3 , 4 , 5 , 6 , 7 ] can be briefly summarized as the following three steps: preprocessing, candidate extraction, and candidate classification. The preprocessing methods mainly include color correction, contrast enhancement, reflective elimination, and other image enhancement operations.…”
Section: Introductionmentioning
confidence: 99%
“…Los trabajos desarrollados por Chenxi, Huang, et al [26], Melo, Tania, et al [27], Adem, K. [28], Tsiknakis, Nikos, et al [17] y P. Xiangji, et al [29], todos clasificados en el cuartil Q1 como estudios de alta calidad usaron las mentiras de exactitud, sensibilidad, especificidad, precisión, recuperación y puntuación-F1 para medir el resultado de sus trabajos, y, por este motivo, validamos que son estas las más idóneas para los estudios de patologías como la RD en imágenes.…”
Section: Métricasunclassified
“…Tania Melo et al (2020) [27] propusieron un algoritmo para la detección de microaneurismas en imágenes de fondo de ojo, comenzando con el pre-pocesamiendo de las imágenes tomando el canal verde de estas, aplicando un filtro gaussiano de paso bajo para eliminar el ruido de las imágenes y un SBF a la imagen ya filtrada. Para la clasificación de las imágenes utilizaron técnicas de supresión no máxima para obtener sólo un candidato por lesión, crecimiento de regiones con un límite de tamaño de 315 píxeles que definieron en función del radio máximo esperado de los MA y usaron la respuesta máxima del SBF y la desviación estándar de los valores de intensidad en la imagen preprocesada para definir a los candidatos.…”
Section: Xiangji Et Al (2020)unclassified