The thalassemia syndromes are a diverse group of inherited disorders that can be characterized according to their insufficient synthesis or absent production of one or more of the globin chains. They are classified in to α, β, γ, δβ, δ, and εγδβ thalassemias depending on the globin chain(s) affected. The β-thalassemias refer to that group of inherited hemoglobin disorders, which are characterized by a reduced synthesis (β(+)-thalassemia) or absence (β(0)-thalassemia) of beta globin (β-globin) chain production (1). Though known as single-gene disorders, hemoglobinopathies such as β-thalassemia and sickle cell anemia are far from being fully resolved in terms of cure, considering the less complex nature of the beta globin (β-globin) gene family compared to more complex multifactorial genetic disorders such as cancer. Currently, there are no definitive therapeutic options for patients with β-thalassemia and sickle cell anemia, and new insights into the pathogenesis of these devastating diseases are urgently needed. Here we address in detail the overall picture utilizing molecular diagnostic approaches that contribute to unraveling the population-specific mutational analysis of β-globin gene. We also present approaches for molecular diagnostic strategies that are applicable to β-thalassemia, sickle cell anemia, and other genetic disorders.