bUnderstanding of the colonization process of epithelial bacteria attached to the rumen tissue during rumen development is very limited. Ruminal epithelial bacterial colonization is of great significance for the relationship between the microbiota and the host and can influence the early development and health of the host. MiSeq sequencing of 16S rRNA genes and quantitative realtime PCR (qPCR) were applied to characterize ruminal epithelial bacterial diversity during rumen development in this study. Seventeen goat kids were selected to reflect the no-rumination (0 and 7 days), transition (28 and 42 days), and rumination (70 days) phases of animal development. Alpha diversity indices (operational taxonomic unit [OTU] numbers, Chao estimate, and Shannon index) increased (P < 0.01) with age, and principal coordinate analysis (PCoA) revealed that the samples clustered together according to age group. Phylogenetic analysis revealed that Proteobacteria, Firmicutes, and Bacteroidetes were detected as the dominant phyla regardless of the age group, and the abundance of Proteobacteria declined quadratically with age (P < 0.001), while the abundances of Bacteroidetes (P ؍ 0.088) and Firmicutes (P ؍ 0.009) increased with age. At the genus level, Escherichia (80.79%) dominated at day zero, while Prevotella, Butyrivibrio, and Campylobacter surged (linearly; P < 0.01) in abundance at 42 and 70 days. qPCR showed that the total copy number of epithelial bacteria increased linearly (P ؍ 0.013) with age. In addition, the abundances of the genera Butyrivibrio, Campylobacter, and Desulfobulbus were positively correlated with rumen weight, rumen papilla length, ruminal ammonia and total volatile fatty acid concentrations, and activities of carboxymethylcellulase (CMCase) and xylanase. Taking the data together, colonization by ruminal epithelial bacteria is age related (achieved at 2 months) and might participate in the anatomic and functional development of the rumen. R ecent years have witnessed growing interest in the diversity and function of ruminal epithelial bacteria. It has been demonstrated that ruminal epithelial bacteria are involved in oxygen scavenging, tissue recycling, and urea digestion (1). Furthermore, in steers, the ruminal epithelial bacterial communities of acidosisresistant and acidosis-susceptible groups were different during subacute ruminal acidosis development, and this difference could be recognized by the host TLRs (Toll-like receptors), which are associated with changes in the function of the rumen epithelial tissue barrier (2). Similarly, in the mouse colon, epithelial bacterial diversity correlated with TLR2 and TLR4 gene expression (3). These findings reveal that since epithelial bacteria are directly attached to the epithelial surface, their end products may play a direct or indirect role in host immune responses and tissue barrier function.Ruminal epithelial bacteria are distinctly different at the taxonomic level from bacteria associated with rumen contents (4, 5). By use of culture-based tech...