We have recently demonstrated that metalloporphyrins are potent inhibitors of both human immunodeficiency virus type 1 (HIV-1) and human immunodeficiency virus type 2 (HIV-2) reverse transcriptases (RTs) [Argyris, E.G., Vanderkooi, J.M., Venkateswaran, P.S., Kay, B.K., and Paterson, Y. (1999) J. Biol. Chem. 274, 1549-1556]. In addition, by screening a phage peptide library we discovered that a peptide with sequence similarity to residues 398-407 from the connection subdomain of HIV RTs binds heme. These findings suggested that this highly conserved region may be the binding site for metalloporphyrins and a novel site for inhibition of enzymatic activity. Our most recent data presented here confirm this suggestion. Screening of HIV-1 RT 398-407 peptide analogs by fluorescence assays demonstrates that Trp residues at positions 401 and 402 are important for heme binding. Furthermore, site-directed mutagenesis of these residues verified these findings and indicated that heme inhibits HIV-1 RT by binding on the connection subdomain of the p66 subunit of the enzyme but not on the p51 subunit. This was also confirmed by analyzing the binding affinities of heme for mutant HIV-1 RT heterodimers, using intrinsic fluorescence assays. The clear identification of the connection domain as a novel inhibition site is crucial in understanding the mechanism of heme binding and enzymatic inhibition and will facilitate the generation of novel porphyrin-based inhibitors of RT.