In wet electrospinning, a natural or synthetic polymer solution is deposited on a non-solvent liquid coagulant used as collector. This technique can create 3D nanofiber scaffolds with better properties (e.g., porosity and high surface area) than those of traditional 2D scaffolds produced by standard electrospinning. Thanks to these characteristics, wet electrospinning can be employed in a wide range of tissue engineering and industrial applications. This review aims to broaden the panorama of this technique, its possible fields of action, and its range of common materials. Moreover, we also discuss its future trends. In this study, we review papers on this method published between 2017 and 2021 to establish the state of the art of wet electrospinning and its most important applications in cardiac, cartilage, hepatic, wound dressing, skin, neural, bone, and skeletal muscle tissue engineering. Additionally, we examine its industrial applications in water purification, air filters, energy, biomedical sensors, and textiles. The main results of this review indicate that 3D scaffolds for tissue engineering applications are biocompatible; mimic the extracellular matrix (ECM); allow stem cell viability and differentiation; and have high porosity, which provides greater cell infiltration compared to 2D scaffolds. Finally, we found that, in industrial applications of wet electrospinning: (1) additives improve the performance of pure polymers; (2) the concentration of the solution influences porosity and fiber packing; (3) flow rate, voltage, and distance modify fiber morphology; (4) the surface tension of the non-solvent coagulant on which the fibers are deposited has an effect on their porosity, compaction, and mechanical properties; and (5) deposition time defines scaffold thickness.