This paper reported a microfluidic platform which realized the characterization of inherent single-cell biomechanical and bioelectrical parameters simultaneously. Individual cells traveled through a constriction channel with deformation images and impedance variations captured and processed into cortical tension T c , specific membrane capacitance C sm , and cytoplasmic conductivity σ cy based on an equivalent biophysical model. These properties of thousands of individual cells of K562, Jurkat, HL-60, HL-60 treated with paraformaldehyde (PA)/cytochalasin D (CD)/concanavalin A (ConA), granulocytes of Donor 1, Donor 2, and Donor 3 were quantified for the first time. Leveraging T c , C sm , and σ cy , (1) high accuracies of classifying wild-type and processed HL-60 cells (e.g., 93.5% of PA treated vs. CD treated HL-60 cells) were realized, revealing the effectiveness of using these three biophysical parameters in cell-type classification; (2) low accuracies of classifying normal granulocytes from three donors (e.g., 56.4% of Donor 1 vs. 2), indicating comparable parameters for normal granulocytes. In conclusion, this platform can characterize single-cell T c , C sm , and σ cy concurrently and quantify multiple parameters in single-cell analysis.