Structure determination of filamentous molecular complexes involves the selection of filaments from cryo-EM micrographs. The automatic selection of helical specimens is particularly difficult and thus many challenging samples with issues such as contamination or aggregation are still manually picked. Here we present two approaches for selecting filamentous complexes: one uses a trained deep neural network to identify the filaments and is integrated in SPHIRE-crYOLO, the other one, called SPHIRE-STRIPER, is based on a classical line detection approach. The advantage of the crYOLO based procedure is that it accurately performs on very challenging data sets and selects filaments with high accuracy.Although STRIPER is less precise, the user benefits from less intervention, since in contrast to crYOLO, STRIPER does not require training. We evaluate the performance of both procedures on tobacco mosaic virus and filamentous F-actin data sets to demonstrate the robustness of each method.