In this paper, a micromechanical fatigue life prediction method for fiber-reinforced ceramic-matrix composites subjected to stochastic overloading at room temperature is developed. Fatigue damage mechanisms in the matrix, interfaces, and fibers are characterized using different damage models. Relationships between the fatigue life and related degradation rate, stochastic overloading stress, and breakage of intact fibers are established. Experimental fatigue life of different C/SiC composites subjected to different stochastic overloading is predicted. For the same stochastic overloading condition, the degradation rate of fatigue life is the highest for cross-ply C/SiC composite, and the lowest for 2.5D C/SiC composite.