In this study, weldability and cracking susceptibility of SN 490C steel were firstly investigated. For this study, SN 490C thick plates which had been developed for anti-seismic steel of building structures were welded by flux-cored arc welding (FCAW) and submerged arc welding (SAW) processes based on welding conditions of actual construction site. Weldments using the plates with different thickness were produced using E71T-1C and EH14 filler wires, respectively. For the weldability tests, various welded joints such as butt and T-joints were examined. After welding, microstructure analysis was performed. Various microstructures were found depending on the location of the weldments. Heat effects by multi-pass welding were correlated with the microstructure. The microstructure was correlated with the hardness profile and the impact test result. In addition, the through-thickness tensile test, window test, and Cranfield test were conducted to evaluate sensitivity of lamellar tearing, which may occur during tensile restraint stress of welds. As a result of the tests, it was found that the SN 490C steel was sufficiently resistant to lamellar tearing.