Plastic packaging accounts for 36% of all plastics made, but amounts to 47% of all plastic waste; 90% of all plastic items are used once and then discarded, which corresponds to around 50% of the total mass of plastics manufactured. Evidence for the ubiquity of microplastic pollution is accumulating rapidly, and wherever such material is sought, it seems to be found. Thus, microplastics have been identified in Arctic ice, the air, food and drinking water, soils, rivers, aquifers, remote maintain regions, glaciers, the oceans and ocean sediments, including waters and deep sea sediments around Antarctica, and within the deepest marine trenches of the Earth. They have also been detected in the bodies of animals, including humans, and as being passed along the hierarchy of food chains, up to marine top predators. Evidence has also been presented that microplastics are able to cross different life stages of mosquito that use different habitats -larva (feeding) to pupa (non-feeding) to adult terrestrial (flying) -and therefore can be spread from aquatic systems by flying insects. The so-called 'missing plastic problem' appears to be, in part, due to limitations in sampling methods, that is, many of the very small microplastic particles may simply escape capture in the trawl nets that are typically employed to collect them, but have been evidenced in grab-sampling experiments. Moreover, it is simply not possible to measure entirely through the vast, oceanic volumes of the oceans. It can, however, be concluded with some confidence that the majority of the plastic is not located at the sea surface, and indeed, several different sinks have been proposed for microplastics, including the sea floor and sediments, the ocean column itself, ice sheets, glaciers and soils. The treatment of land with sewage sludge is also thought to make a significant contribution of microplastics to soil. A substantial amount of airborne microparticulate pollution is created by the abrasion of tyres on road surfaces (and other 'non-exhaust' sources), meaning that even electric vehicles are not 'clean' in this regard, despite their elimination of tailpipe PM 2.5 and PM 10 emissions. The emergence of nanoplastics in the environment poses a new set of potential threats, although any impacts on human health are not yet known, save, as indicated from model studies. While improved design, manufacture, collection, reuse, repurposing and reprocessing/recycling of plastic items are necessary, overwhelmingly, a Article Rhodes 219 curbing in the use of plastic materials in the first place is demanded, particularly from single-use packaging. However, plastic pollution is just one element in the overall matrix of a changing climate ('the world's woes') and must be addressed as part of an integrated consideration of how we use all resources, fossil and otherwise, and the need to change our expectations, goals and lifestyles. In this effort, the role of deglobalisation/relocalisation may prove critical: thus, food and other necessities might be produced more on...