A survey of Antarctic waters along the East Scotia Ridge in the Southern Ocean reveals a new vent biogeographic province among previously uncharacterized deep-sea hydrothermal vent communities.
Chemosynthetic primary production by microbes supports abundant faunal assemblages at deep-sea hydrothermal vents, with zonation of invertebrate species typically occurring along physico-chemical gradients. Recently discovered vent fields on the East Scotia Ridge (ESR) in the Southern Ocean represent a new province of vent biogeography, but the spatial dynamics of their distinct fauna have yet to be elucidated. This study determines patterns of faunal zonation, species associations, and relationships between faunal microdistribution and hydrothermal activity in a vent field at a depth of 2,400 m on the ESR. Remotely operated vehicle (ROV) dives obtained high-definition imagery of three chimney structures with varying levels of hydrothermal activity, and a mosaic image of >250 m2 of seafloor co-registered with temperature measurements. Analysis of faunal microdistribution within the mosaiced seafloor reveals a consistent pattern of faunal zonation with increasing distance from vent sources and peak temperatures. Assemblages closest to vent sources are visibly dominated by a new species of anomuran crab, Kiwa n. sp. (abundance >700 individuals m−2), followed by a peltospiroid gastropod (>1,500 individuals m−2), eolepadid barnacle (>1,500 individuals m−2), and carnivorous actinostolid anemone (>30 individuals m−2). Peripheral fauna are not dominated by a single taxon, but include predatory and scavenger taxa such as stichasterid seastars, pycnogonids and octopus. Variation in faunal microdistribution on chimneys with differing levels of activity suggests a possible successional sequence for vent fauna in this new biogeographic province. An increase in δ34S values of primary consumers with distance from vent sources, and variation in their δ13C values also indicate possible zonation of nutritional modes of the vent fauna. By using ROV videography to obtain a high-resolution representation of a vent environment over a greater extent than previous studies, these results provide a baseline for determining temporal change and investigations of processes structuring faunal assemblages at Southern Ocean vents.
While there is now an established recognition of microplastic pollution in the oceans, and the detrimental effects this may have on marine animals, the ocean depth at which such contamination is ingested by organisms has still not been established. Here, we detect the presence of ingested microplastics in the hindguts of Lysianassoidea amphipod populations, in six deep ocean trenches from around the Pacific Rim (Japan, Izu-Bonin, Mariana, Kermadec, New Hebrides and the Peru-Chile trenches), at depths ranging from 7000 m to 10 890 m. This illustrates that microplastic contaminants occur in the very deepest reaches of the oceans. Over 72% of individuals examined (65 of 90) contained at least one microparticle. The number of microparticles ingested per individual across all trenches ranged from 1 to 8. The mean and standard error of microparticles varied per trench, from 0.9 ± 0.4 (New Hebrides Trench) to 3.3 ± 0.7 (Mariana Trench). A subsample of microfibres and fragments analysed using FTIR were found to be a collection of plastic and synthetic materials (Nylon, polyethylene, polyamide, polyvinyl alcohol, polyvinylchloride, often with inorganic filler material), semi-synthetic (rayon and lyocell) and natural fibre (ramie). Notwithstanding, this study reports the deepest record of microplastic ingestion, indicating that anthropogenic debris is bioavailable to organisms at some of the deepest locations in the Earth's oceans.
Microbial ecology provides insights into the ecological and evolutionary dynamics of microbial communities underpinning every ecosystem on Earth. Microbial communities can now be investigated in unprecedented detail, although there is still a wealth of open questions to be tackled. Here we identify 50 research questions of fundamental importance to the science or application of microbial ecology, with the intention of summarising the field and bringing focus to new research avenues. Questions are categorised into seven themes: host-microbiome interactions; health and infectious diseases; human health and food security; microbial ecology in a changing world; environmental processes; functional diversity; and evolutionary processes. Many questions recognise that microbes provide an extraordinary array of functional diversity that can be harnessed to solve real-world problems. Our limited knowledge of spatial and temporal variation in microbial diversity and function is also reflected, as is the need to integrate micro- and macro-ecological concepts, and knowledge derived from studies with humans and other diverse organisms. Although not exhaustive, the questions presented are intended to stimulate discussion and provide focus for researchers, funders and policy makers, informing the future research agenda in microbial ecology.
The Southwest Indian Ridge is the longest section of very slow to ultraslow-spreading seafloor in the global mid-ocean ridge system, but the biogeography and ecology of its hydrothermal vent fauna are previously unknown. We collected 21 macro- and megafaunal taxa during the first Remotely Operated Vehicle dives to the Longqi vent field at 37° 47′S 49° 39′E, depth 2800 m. Six species are not yet known from other vents, while six other species are known from the Central Indian Ridge, and morphological and molecular analyses show that two further polychaete species are shared with vents beyond the Indian Ocean. Multivariate analysis of vent fauna across three oceans places Longqi in an Indian Ocean province of vent biogeography. Faunal zonation with increasing distance from vents is dominated by the gastropods Chrysomallon squamiferum and Gigantopelta aegis, mussel Bathymodiolus marisindicus, and Neolepas sp. stalked barnacle. Other taxa occur at lower abundance, in some cases contrasting with abundances at other vent fields, and δ13C and δ15N isotope values of species analysed from Longqi are similar to those of shared or related species elsewhere. This study provides baseline ecological observations prior to mineral exploration activities licensed at Longqi by the United Nations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.