Schizophrenia is characterized by reduced hippocampal volume, decreased dendritic spine density, altered neuroplasticity signaling pathways, and cognitive deficits associated with impaired hippocampal function. We sought to determine whether this diverse pathology could be linked to NMDA receptor (NMDAR) hypofunction, and thus used the serine racemase-null mutant mouse (SR −/− ), which has less than 10% of normal brain D-serine, an NMDAR coagonist. We found that D-serine was necessary for the maintenance of long-term potentiation in the adult hippocampal dentate gyrus and for full NMDAR activity on granule cells. SR −/− mice had reduced dendritic spines and hippocampal volume. These morphological changes were paralleled by diminished BDNF/Akt/mammalian target of rapamycin (mTOR) signaling and impaired performance on a traceconditioning memory task. Chronic D-serine treatment normalized the electrophysiological, neurochemical, and cognitive deficits in SR −/− mice. These results demonstrate that NMDAR hypofunction can reproduce the numerous hippocampal deficits associated with schizophrenia, which can be reversed by chronic peripheral D-serine treatment.miR-132 | MeCP2 | glycogen synthase 3 kinase | CREB S chizophrenia is a severe psychiatric disorder that affects 1% of the population worldwide (1). There are widespread morphological, neurochemical, and functional changes in the brain in schizophrenia that have been linked to its symptomatic features (2). For example, the hippocampus of patients with schizophrenia exhibits reduced dendritic spine density (3), atrophy (4), and impaired activation while performing cognitive tasks (5). The neuroplasticity deficits observed in schizophrenia could be caused by a constellation of factors.Impaired neurotrophic signaling could be one mechanism underlying these abnormalities. BDNF regulates a complex array of processes, including neurite outgrowth and spine density, by signaling through tropomyosin receptor kinase B (TrkB), its highaffinity receptor (6). In postmortem studies, BDNF mRNA and protein (7-9) levels, as well as TrkB mRNA (7, 10, 11) and protein (12), are reduced in subjects with schizophrenia. V-akt murine thymoma viral oncogene (Akt) is a kinase downstream of TrkB. Not only is the Akt1 isoform a putative schizophrenia risk gene (13), its expression (14, 15) and the amount of phosphorylated Akt (p-Akt) (16) in the dentate gyrus (DG) are reduced in schizophrenia.Aberrant microRNA (miR) processing might also be contributing to the pathophysiology of schizophrenia (17). These noncoding RNAs regulate neural plasticity by controlling the translation of target mRNA transcripts. Expression of the neuron-enriched miR-132 is reduced in schizophrenia (18); it regulates basal and activityinduced neurite outgrowth (19), and is up-regulated in vivo in response to external stimuli (20, 21). Importantly, both BDNF (22) and miR-132 (17) expression are increased by NMDAR receptor (NMDAR) activation.Pharmacologic and biochemical evidence has converged to support NMDAR hypofunct...