The aim of this study was to investigate the regulatory function of the non-coding microRNA-155 (miR-155) and suppressor of cytokine signaling 1 (SOCS1) in alcoholic hepatitis (AH) and its potential mechanism associated with the mitogen-activated protein kinase (MAPK) signaling pathway. Levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin (ALB), total bilirubin (TBIL), malondialdehyde (MDA), and superoxide dismutase (SOD) were measured in a rat model of AH. The biological prediction website microRNA.org and dual-luciferase reporter gene assay were used to identify whether SOCS1 was a direct target of miR-155, and the effects of miR-155 and SOCS1 on the viability, cycle progression, and apoptosis of hepatic stellate cells were assessed using RT-qPCR, Western blot assay, MTT assay, Annexin V/PI double staining, and PI single staining. The levels of ALT, AST, MDA, and TBIL and the liver cell morphology were all prominently changed in AH model rats. miR-155 suppressed SOCS1 by specifically binding to SOCS1-3'-UTR to activate the MAPK signaling pathway. SOCS1 had low expression while miR-155 was highly expressed in AH rats. miR-155 promoted hepatic stellate cell viability and cycle progression and reduced cell apoptosis by silencing SOCS1. Together, we find that silenced miR-155 could upregulate SOCS1 and inactivate the MAPK signaling pathway, thereby inhibiting the proliferation of alcoholic hepatic stellate cells and promoting cell apoptosis.