The transmission between community-associated (CA-) and healthcare-associated (HA-) methicillin-resistant Staphylococcus aureus (MRSA) has increased the challenge of infection control. To understand the clonal evolution and transmission of MRSA isolates, we compared the characteristics of 175 CA-MRSA and 660 HA-MRSA strains at a Chinese tertiary hospital in 2012–2017. Antibiotic susceptibility was performed on VITEK system, the genetic background of the isolates was characterized by SCCmec, spa, and MLST typing, while virulence determinants were screened using conventional PCR. Although more than 70% of the CA-MRSA isolates were erythromycin and clindamycin resistant, CA-MRSA was more susceptible than HA-MRSA to most of the antibiotics tested. ST239-MRSA-III-t030 (30%) was the most prevalent clone among HA-MRSA, while ST59-MRSA-IVa-t437 (28.8%) was the major clone among CA-MRSA. Notably, ST59-MRSA-IVa-t437 accounted for 6.7% of the chosen HA-MRSA isolates. Additionally, difference in virulence gene content was found between the CA- and HA-MRSA strains. In conclusion, epidemiological characteristics were largely different between CA- and HA-MRSA. Although ST239-MRSA-III-t030 is still the predominant clone among HA-MRSA, the community clone ST59-MRSA-IVa-t437 has the potential of becoming an essential part of HA-MRSA in the region tested.
Objective
Anti-DFS70 antibodies correlating with the nuclear dense fine speckled (DFS) pattern in the HEp-2 indirect immunofluorescence assay (IFA) are less common in patients with systemic autoimmune rheumatic disease (SARD) than in healthy subjects and their clinical associations remain elusive. We hosted a multi-center HEp-2 IFA training program to improve the ability of clinical laboratories to recognize the DFS pattern and to investigate the prevalence and relevance of anti-DFS70 antibodies.
Methods
DFS pattern sera identified by HEp-2 IFA in 29 centers in China were redirected to a central laboratory for anti-DFS70 testing by line immunoblot assay (LIA), enzyme-linked immunosorbent assay (ELISA), and IFA with HEp-2 ELITE/DFS70-KO substrate. Anti-extractable nuclear antigen antibodies were measured by LIA and the clinical relevance was examined in adult and pediatric patients.
Results
HEp-2 IFA positive rate and DFS pattern in positive sera were 36.2% (34,417/95,131) and 1.7% (582/34,417) in the patient cohort, and 10.0% (423/4,234) and 7.8% (33/423) in a healthy population, respectively. Anti-DFS70 prevalence among sera presenting the DFS pattern was 96.0, 93.7, and 49.6% by ELISA, LIA, and HEp-2 ELITE, respectively. 15.5% (52/336) of adult and 50.0% (20/40) of pediatric anti-DFS70 positive patients were diagnosed with SARD. Diseases most common in anti-DFS70 positive patients were spontaneous abortion (28.0%) in adults and juvenile idiopathic arthritis (22.5%) in pediatric patients.
Conclusion
Accurate DFS pattern identification increased the detection rate of anti-DFS70 antibodies by ELISA and LIA. Anti-DFS70 antibodies are remarkably high in cases of spontaneous abortion and in pediatric SARD patients, but not prevalent in adult SARD patients.
Background: Long noncoding RNAs (lncRNAs) have been reported to be important regulators in pathogenesis of human cancers, including nasopharyngeal carcinoma (NPC). Here, we mainly aimed to explore the mechanisms of LncRNA-SNHG5/ miR-1179/HMGB3 axis in NPC progression. Methods: RT-qPCR and Western blot analysis were employed to detect mRNA and protein expressions. CCK-8, Transwell and dual luciferase reporter assays were applied to investigate functions of LncRNA-SNHG5/miR-1179/ HMGB3 axis. Results: Upregulation of lncRNA-SNHG5 and downregulation of miR-1179 were identified in NPC, which were associated with adverse clinical outcomes. Functionally, upregulation of lncRNA-SNHG5 and downregulation of miR-1179 accelerated NPC cell proliferation, migration and invasion. Furthermore, lncRNA-SNHG5 acted as a molecular sponge of miR-1179 in NPC. Besides that, upregulation of HMGB3 was found in NPC, and knockdown of HMGB3 restrained NPC progression. Moreover, HMGB3, a target of miR-1179, regulated NPC progression by mediating LncRNA-SNHG5/miR-1179 axis. Conclusion: LncRNA SNHG5 serves as a tumor promoter in NPC by sponging miR-1179 and upregulating HMGB3.
The aim of this study was to investigate the regulatory function of the non-coding microRNA-155 (miR-155) and suppressor of cytokine signaling 1 (SOCS1) in alcoholic hepatitis (AH) and its potential mechanism associated with the mitogen-activated protein kinase (MAPK) signaling pathway. Levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin (ALB), total bilirubin (TBIL), malondialdehyde (MDA), and superoxide dismutase (SOD) were measured in a rat model of AH. The biological prediction website microRNA.org and dual-luciferase reporter gene assay were used to identify whether SOCS1 was a direct target of miR-155, and the effects of miR-155 and SOCS1 on the viability, cycle progression, and apoptosis of hepatic stellate cells were assessed using RT-qPCR, Western blot assay, MTT assay, Annexin V/PI double staining, and PI single staining. The levels of ALT, AST, MDA, and TBIL and the liver cell morphology were all prominently changed in AH model rats. miR-155 suppressed SOCS1 by specifically binding to SOCS1-3'-UTR to activate the MAPK signaling pathway. SOCS1 had low expression while miR-155 was highly expressed in AH rats. miR-155 promoted hepatic stellate cell viability and cycle progression and reduced cell apoptosis by silencing SOCS1. Together, we find that silenced miR-155 could upregulate SOCS1 and inactivate the MAPK signaling pathway, thereby inhibiting the proliferation of alcoholic hepatic stellate cells and promoting cell apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.