We discovered that an inverse relationship exists in the expression of ras/c-myc and ribosomal protein RPS2 with pre-let-7a-1/let-7a/let-7f miRNA and prostate tumor cell malignancy. Nonmalignant IBC-10a cells expressed low levels of ras/RPS2 and elevated pre-let-7a-1/let-7a/let-7f miRNA, whereas the reverse occurred in malignant PCa-20a and PC-3ML cells. Stable transfection of IBC-10a cells with pBABE.ras and pBABE.RPS2 induced ras, c-myc, and RPS2 expression, whereas the levels of let-7a/let-7f miRNA dropped to near zero. Conversely, in pBABE.pre-let-7a-1 transfected PCa-20a and PC-3ML clones, let-7a/let-7f increased whereas ras, RPS2, and c-myc dropped greater than 5-fold. Electrophoretic mobility shift assays, antibody "supershift" assays and immunoprecipitation assays revealed that RPS2 specifically binds pre-let-7a-1 to block RNA processing. Immunoflourescent studies and Northern blots confirmed that RPS2 complexes with pre-let-7a-1 (i.e., in episomal structures) to block processing to let-7a/let-7f, indicating RPS2 may prevent let-7a miRNA expression to indirectly promote oncogene expression. Functional studies further showed that the colony-forming ability (CFA) and invasive activities of IBC-10a cells were significantly enhanced in pBABE-ras.IBC-10a and pBABE-RPS2-IBC-10a clones. Conversely, with the "knockdown" of ras and RPS2 in malignant PC-3ML cells (i.e., in pLKO. TRC.shRNA.ras.PC3-ML, pLKO.TRC.shRNA.RPS2.PC-3ML transfected cells), there was both a loss of these functions and a loss of tumorigenesis in SCID mice. Likewise, with the overexpression of let-7a/let-7f in pBABE. pre-let-7a-1.PC-3ML clones (and PCa-20a clones), CFAs, invasive activities in vitro, and tumorigenesis in vivo were significantly reduced. These results show for the first time that RPS2 blocks pre-let-7a-1 processing to enable ras and c-myc expression and the transformation of primary tumor cells. Mol Cancer Res; 9(1); 36-50. Ó2011 AACR.