Recent advances in soil phosphorus (P) studies have revealed unique P hot spots and discrete micron-sized grains at soil microsites, but the significance of these so-called 'hot spots' and grains in P cycling and long-term supply is yet to be determined. We examined soil particles and pore space distribution at a micro-scale in two postglacial forest soils by laser ablation ICP-MS imaging. This allowed us to semi-quantitatively reveal both axial and lateral abundance, distribution, and co-localization of P with elements known to influence its chemical speciation (e.g., Si, Al, Mn, Ca, and Fe). The results show topsoil P to be co-localised predominantly with Si, Al, and Fe. However, in the subsoils, P was co-localised mainly with Ca, Si, Al, and Mg in spots