This research aimed to study the androgenesis and spontaneous chromosome doubling of five barley genotypes using an isolated in vitro microspore culture technique, involving a completely randomized design (CRD) with three replications. Statistical analysis of embryogenesis and cytogenetic results showed that genotype had a significant effect on haploid embryogenesis (P<0.01) and on spontaneous chromosome doubling (P<0.05). The genotype Igri was found to have the highest potential to produce haploid embryos (1577 embryos from 100 anthers), followed by the genotypes Boyer/Rojo, Afzal/Turkman/Kavir, Ashar/Hebo and Agrigashar/Matico with 369, 304, 278 and 150 embryos from 100 anthers, respectively. The highest percentage of spontaneous chromosome doubling (76%) was observed for the genotype which had the lowest embryogenesis (Agrigashar/Matico) and the lowest (65%) for the genotype with the highest androgenic capacity (Igri). Microspore embryogenesis also showed comparatively higher genotypic (109.2) and phenotypic (109.5) coefficients of variation, heritability (99.62) and genetic advance (1206.77), indicating the pre-dominance of additive gene action in the control of this character in the material studied. Estimates of genetic parameters (PCV, GCV and heritability) for microspore embryogenesis were higher than for spontaneous doubled haploids. These results indicated that selection for androgenic capacity would be more effective than for spontaneous doubled haploids. The findings showed a negative relationship (r= -0.68) between embryogenesis and spontaneous chromosome doubling in the barley genotypes studied. All the large embryos used had high regenerability and good plantlet formation.