Four unidirectional fiber reinforced SiCN ceramic matrix composites were manufactured by means of polymer infiltration and pyrolysis. Two carbon fibers (T800H and Granoc XN90) as well as two silicon carbide fibers (Tyranno ZMI and SA3) without fiber coating were chosen. As matrix precursor, a poly(methylvinyl)silazane was investigated and utilized. The composites with the SA3 and the XN90 fiber had the highest tensile strengths of 478 and 288 MPa, respectively. It is considered that these high modulus fibers with the low modulus SiCN matrix create weak matrix composites. After exposure to air (T = 1200°C, 10 h), a significant decrease of the mechanical properties was found, caused by the burnout of carbon fibers and the oxidation through open pores stemming from the PIP process and SiCN/SiCN interfaces in case of the SiC fiber based composites.