Four unidirectional fiber reinforced SiCN ceramic matrix composites were manufactured by means of polymer infiltration and pyrolysis. Two carbon fibers (T800H and Granoc XN90) as well as two silicon carbide fibers (Tyranno ZMI and SA3) without fiber coating were chosen. As matrix precursor, a poly(methylvinyl)silazane was investigated and utilized. The composites with the SA3 and the XN90 fiber had the highest tensile strengths of 478 and 288 MPa, respectively. It is considered that these high modulus fibers with the low modulus SiCN matrix create weak matrix composites. After exposure to air (T = 1200°C, 10 h), a significant decrease of the mechanical properties was found, caused by the burnout of carbon fibers and the oxidation through open pores stemming from the PIP process and SiCN/SiCN interfaces in case of the SiC fiber based composites.
A damage tolerant weak matrix SiC fiber reinforced composite was developed by utilising a polyvinylsilazane in the polymer infiltration and pyrolysis (PIP) process. The polysilazane was infiltrated via resin transfer moulding in a layup of SA3 fabrics, thermally cured and pyrolyzed. This process was repeated until a residual open porosity of below 5% was reached. During pyrolysis the polyvinylsilazane converts to an amorphous SiCN matrix. In combination with the high modulus Tyranno SA3 SiC fibers a weak matrix composite is created. To protect the composite in oxidative environment at high temperatures, an exterior SiC coating by means of chemical vapour deposition was applied. The polyvinylsilazane was investigated in terms of differential scanning calorimetry and measurement of viscosity to find the ideal temperatures for the polymer infiltration step. Specimens of the precursor were cured and pyrolyzed. The densification during pyrolysis was investigated in terms of He gas pycnometry and X-ray diffraction. The composite was characterized by SEM,¯CT and mercury intrusion porosimetry. To determine the suitability of the SiC/SiCN composite for high temperature applications, samples were oxidized and tested by means of 3-point bending.
Ceramic matrix composites usually utilize carbon or ceramic fibers as reinforcements. However, such fibers often expose a low ductility during failure. In this work, we follow the idea of a reinforcement concept of a ceramic matrix reinforced by refractory metal fibers to reach pseudo ductile behavior during failure. Tungsten and molybdenum fibers were chosen as reinforcement in SiCN ceramic matrix composites manufactured by polymer infiltration and pyrolysis process. The composites were investigated with respect to microstructure, flexural-and tensile strength. The single fiber strengths for both tungsten and molybdenum were investigated and compared to the strength of the composites. Tensile strengths of 206 and 156 MPa as well as bending strengths of 427 and 312 MPa were achieved for W/SiCN and Mo/SiCN composites, respectively. The W fiber became brittle across the entire cross section, while the Mo fiber showed a superficial, brittle reaction zone but kept ductile on the inside.
Liquid Silicon Infiltration (LSI) is a technique to manufacture non-oxide ceramic matrix composites such as C/C-SiC or SiC/SiC. In the beginning of this three-step process, fiber preforms are shaped and impregnated with phenolic resins. After curing, the preforms are pyrolyzed to convert the polymer matrix to a porous carbon matrix. This porosity is then used to infiltrate liquid silicon by capillary forces. Simultaneously, an exothermic reaction of silicon and carbon creates a silicon carbide matrix. Generally the liquid silicon reacts with any carbon and even with SiC present in the form of fibers, fiber coatings or matrix. Therefore, especially the fibers must be protected from Si attack effectively. The morphology of silicon carbide was observed to be heavily driven by Ostwald ripening. This can be suppressed by the addition of boron to the melt. The initially formed SiC crystals in C/C-SiC composites are hereby prevented from grain coarsening, resulting in almost completely preserved C/C blocks. For the manufacture of SiC/SiC composites, the silicon boron alloys allow an effective preservation of the nanocrystalline SiC-fibers. Thus, the use of Si based B containing alloys helps effectively to moderate and control the aggressive reaction during LSI process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.