This article focuses on the development of phenolic resin moulding materials for the production of new carbon fibre-reinforced ceramic composite materials based on C/C-SiC by utilising the LSI (liquid silicon infiltration) production method. The production of these moulding materials is being accomplished by combining phenolic resin and carbon fibres with the addition of a few selected parts of processing aids, during which the influence of the used lubricants on the processability of the moulding materials is examined. The starting materials, microstructures and mechanical properties of the materials were characterised at every step of the entire process (CFRP and C/C composites) as well as the end of the whole production (C/C-SiC composites). During this investigation a link between the portions of the lubricant used, the forming of the porosity and the impact on the mechanical properties was discovered. In regards to the optimisation of the process the involved parties were able to determine an optimal lubricant ratio.
Abstract:The reinforcement of aluminum alloys with particles leads to the enhancement of their mechanical properties at room temperature. However, the creep behavior at elevated temperatures is often negatively influenced. This raises the question of how it is possible to influence the creep behavior of this type of material. Within this paper, selected creep and tensile tests demonstrate the beneficial effects of boron on the properties of precipitation-hardenable aluminum matrix composites (AMCs). The focus is on the underlying microstructure behind this effect. For this purpose, boron was added to AMCs by means of mechanical alloying. Comparatively higher boron contents than in steel are investigated in order to be able to record their influence on the microstructure including the formation of potential new phases as well as possible. While the newly formed phase Al 3 BC can be reliably detected by X-ray diffraction (XRD), it is difficult to obtain information about the phase distribution by means of scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM) investigations. An important contribution to this is finally provided by the investigation using Raman microscopy. Thus, the homogeneous distribution of finely scaled Al 3 BC particles is detectable, which allows conclusions about the microstructure/property relationship.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.