Exposure to microcystins (MCs) in humans and animals commonly occurs through the consumption of drinking water and food contaminated with cyanobacteria. Although studies have focused on developing water filtration treatments for MCs using activated carbon, dietary sorbents to reduce the bioavailability of MCs from the stomach and intestines have not been reported. To address this need, edible calcium and sodium montmorillonite clays were characterized for their ability to bind MC containing leucine and arginine (MC-LR) under conditions simulating the gastrointestinal tract and compared with a medical-grade activated carbon. Results of in vitro adsorption isotherms and thermodynamics showed that binding plots for MC-LR on montmorillonites fit the Langmuir model with high binding capacity, affinity, Gibbs free energy, and enthalpy. The in silico results from molecular modeling predicted that the major binding mechanisms involved electrostatics and hydrogen bonds, and that interlayers were important binding sites. The safety and detoxification efficacy of the sorbents against MC-LR were validated in a battery of living organisms, including Hydra vulgaris, Lemna minor, and Caenorhabditis