In Laser powder bed fusion (L-PBF), metal powders, sensitive to humidity and oxygen, like AlSi10Mg or Ti-6Al-4 V are used as starting material. Titanium-based materials are influenced by oxygen and nitrogen due to the formation of oxides and nitrides, respectively. During this research, the oxygen concentration in the build chamber was controlled from 2 ppm to 1000 ppm using an external measurement device. Built Ti-6Al-4 V specimens were evaluated regarding their microstructure, hardness, tensile strength, notch toughness, chemical composition and porosity, demonstrating the importance of a stable atmospheric control. It could be shown that an increased oxygen concentration in the shielding gas atmosphere leads to an increase of the ultimate tensile strength by 30 MPa and an increased (188.3 ppm) oxygen concentration in the bulk material. These results were compared to hot isostatic pressed (HIPed) samples to prevent the influence of porosity. In addition, the fatigue behavior was investigated, revealing increasingly resistant samples when oxygen levels in the atmosphere are lower.