In situ composite manufacture is an approach to improve interfacial adhesion between matrix and reinforcements, in which reinforcements are synthesized along composite processing itself. In situ powder metallurgy route, in particular, offers alternatives to some shortcomings found in other techniques. This work aims not only to review the state of the art on metal matrix composites (MMCs)—including cermets—obtained in situ by powder metallurgy, but also to dissect key aspects related to the development of such materials in order to establish theoretical criteria for decision making before and along experiments. Aspects regarding the design, raw material selection, and processing of such composites were observed and divided between concept, intrinsic, and extrinsic parameters. That way, by means of material databases and computational thermodynamics applied to examples of the reviewed literature, we aim at providing tools in both conducting leaner experiments and richer discussion in this field.