The sintered Nd<sub>25.5</sub>Dy<sub>6.5</sub>Co<sub>13</sub>Fe<sub>bal</sub>M<sub>1.05</sub>B<sub>0.98</sub> magnet (Co13 magnet) and Nd<sub>30</sub>Dy<sub>1.5</sub>Co<sub>0.5</sub>Fe<sub>bal</sub>M<sub>1.05</sub>B<sub>0.98</sub> (35SH magnet) were prepared by strip casting (SC), hydrogen decrepitation (HD), jet milling (JM), orienting compression, sintering and annealling. The maximum magnetic energy product (<em>BH</em>)<sub>max</sub> and coercivity <em>H</em><sub>cj</sub> of Co13 magnet at room temperature were 30.88 MGOe and 19.01 kOe, which were lower than 35SH magnet. By adding Co and Dy, the remanence temperature coefficient α, curie temperature <em>T</em><sub>C</sub> and max operating temperature <em>T</em><sub>W</sub> were significantly increased form -0.136 %/℃ to -0.065 %/℃ (25~180 ℃), 310 ℃ to 454 ℃ and 160 ℃ to 200 ℃ respectively. Mechanical property test and fracture analysis showed that, due to the high content of Co in the magnet, the proportion of cleavage fracture in the main phase grains was increased, and the bending strength Rbb was reduced compared with 35SH magnets, which was nearly twice that of 2:17 type Sm-Co magnets. The reason for the decrease of Rbb might be that Co element preferentially replaced Fe in the 2:14:1 main phase, which led to lattice distortion and reduced the grain strength of the main phase. The microstructure analysis showed that, there was a high Co region in the grain boundary phase of Co13 magnet, and its composition was close to (Nd,Dy)(Fe,Co)<sub>3</sub>, which might be one of the reasons for the decrease of coercivity <em>H</em><sub>cj</sub>.