A fluxless process of bonding large silicon chips to ceramic packages has been developed using a Au-Sn eutectic solder. The solder was initially electroplated in the form of a Au/Sn/Au multilayer structure on a ceramic package and reflowed at 430°C for 10 min to achieve a uniform eutectic 80Au-20Sn composition. A 9 mm 9 9 mm silicon chip deposited with Cr/Au dual layers was then bonded to the ceramic package at 320°C for 3 min. The reflow and bonding processes were performed in a 50-mTorr vacuum to suppress oxidation. Therefore, no flux was used. Even without any flux, high-quality joints were produced. Microstructure and composition of the joints were studied using scanning electron microscopy with energy-dispersive x-ray spectroscopy. Scanning acoustic microscopy was used to verify the joint quality over the entire bonding area. To employ the x-ray diffraction method, samples were made by reflowing the Au/Sn/Au structure plated on a package. This was followed by a bonding process, without a Si chip, so that x-rays could scan the solder surface. Joints exhibited a typical eutectic structure and consisted of (Au,Ni)Sn and (Au,Ni) 5 Sn phases. This novel fluxless bonding method can be applied to packaging of a variety of devices on ceramic packages. Its fluxless nature is particularly valuable for packaging devices that cannot be exposed to flux such as sensors, optical devices, medical devices, and laser diodes.