Mg–Sn–Al alloy is a new type of heat-resistant magnesium alloy with great potential and the hot deformation process of this alloy is of great significance for its application. The microstructure, hot deformation behavior, textural evolution, and processing map of a Mg–8 wt.% Sn–1.5 wt.% Al alloy were studied. A Gleeble 1500 D thermo-mechanical simulator was used. The temperature of deformation was 653 to 773 K, the strain rate was 0.001–1 s−1, and the maximum deformation degree was 60%. The obtained results show that the rheological stress of the alloy decreases with an increase in deformation temperature and increases with an increase in the strain rate. The alloy is completely dynamically recrystallized at 653 K, and the entire structure is formed of homogeneous crystals/grains, with small secondary phase particles distributed at the crystal boundary. The mean apparent activation energy of hot compression deformation is 153.5 kJ/mol. The Mg–8 wt.% Sn–1.5 wt.% Al alloy exhibits excellent plastic deformation properties, an expansive thermal processing interval, and a narrow instability zone under the test temperature and deformation rate. The optimal process parameters of the alloy comprise deformation temperatures between 603 and 633 K and strain rates of 0.03 to 0.005 s−1.