The recent advances achieved in additive manufacturing (AM) technology demonstrate the potential to realize customized metal components, ensuring weight reduction opportunities. These benefits make AM attractive for high-cost aerospace applications, especially where high geometric complexity is required. In the context of an EU research scenario, the H2020 MANUELA (Additive Manufacturing Using Metal Pilot Line) project promotes the development of new technologies for design optimization by enabling the application of novel materials in AM. This paper illustrates recent advances in a new aluminum alloy (Al-HS1) with high strength emphasizing all of the characterization steps at the coupon level. This material has been employed in the re-engineering of a conventional hydraulic manifold using a powder bed fusion-laser beam (PBF-LB) process. Both the simulations and structural tests allowed for proving its compliance and technological maturity with industrial standards and applicable airworthiness requirements.