The microacoustic methods of biomedical analysis, implemented on piezoelectric crystals and ceramics, are becoming increasingly popular due to the fact of their potential for integration into laboratories-on-a-chip, biochips, and biosensors as functional elements of biosensors. An important stage in diagnostics of infectious diseases is the identification of pathogens. One possible applications of such a sensor is an alternative to the time- and labor-consuming Gram method of discriminating bacteria according to the composition of their cell walls. Thus, bacteria, which in a Gram staining procedure do not decolor after application of the dye solution, are classified as Gram-positive (G(+)). They are surrounded with a thick peptidoglycan layer that is pulpy and dampens acoustic waves. While Gram-negative (G(–)) bacteria, which acquire a red color in a Gram procedure, are covered with a thin and springy layer, demonstrating resonance effects when interacting with acoustic fields. Thus, G(+) and G(–), which are differently colored in Gram procedures, also react differently to an external acoustic field: for G(–) bacteria, this was a sharp decrease in the Q-factor of the “resonator–suspension” system and a shift of the resonance curve to lower frequencies. While for G(+) bacteria, although a certain shift of the resonance curve was also observed, the bandwidth of the resonance curve practically did not change. This effect was studied for L. acidophilus (G(+)) and Escherichia coli (G(–)) bacilli with quarts resonators of 4 MHz, 5 MHz, and 10 MHz. The biosensor was tested using Lactobacillus fermentum, E. coli M-17, Bifidobacterium bifidum, Burkholderia cepacian, and Staphylococcus aureus. At this stage, it has been demonstrated that the method is particularly effective for discriminating bacteria of a similar shape, such as, for example, cocci. The discrimination of the Gram factor for cocci and bacilli was less accurate and needs further studies for selection of precise resonance frequencies.