We suggest a concept design of a SAW-based microaccelerometer with an original triangular-shaped console-type sensing element. Our design is particularly optimized to increase the robustness against positioning errors of the SAW resonators on the opposite sides of the console. We also describe the results of computer simulations and laboratory tests that are in a perfect agreement with each other and present the sensitivity characteristics of a manufactured experimental design device.
We propose the use of aluminum nitride (AlN) membranes acting as sensitive elements for the surface acoustic wave (SAW)-based acceleration measurement. The proposed solution is compared against existing prototypes based on the use of quartz (SiO2)/lithium niobate (LiNbO3) membranes that are characterized by extensive anisotropic properties. Using COMSOL Multiphysics 5.4 computer simulations we show explicitly that sensitive elements based on less anisotropic AlN membranes overcome both the low sensitivity limitations of SiO2 and low temperature stability of LiNbO3. Moreover, AlN membranes exhibit nearly double the robustness against irreversible mechanical deformations when compared against SiO2, which in turn allows for further 1.5-fold sensitivity enhancement over LiNbO3 based sensors. Taking into account their acceptable frequency characteristics, we thus believe that the AlN membranes are a good candidate forsensitive elements especially for high acceleration measurements.
A new modification of an acceleration measurement sensor based on an acoustic waves resonance principle is proposed. Common angular-shaped sensors exhibit stress concentrations at the angular points near the origin points of destruction under external stresses; these points are the "Achilles' heel" of the entire design. To overcome the above limitation, we suggest an angular-free ring-shaped sensitive element design that is characterized by enhanced robustness against external stress. The analytical treatment is validated by computer simulation results performed using the COMSOL Multiphysics software package. For an appropriate model parameterization, an original experiment has been carried out to estimate the stress-strained robustness of two potential candidates for sensitive console materials. Moreover, characteristics of the proposed sensor design, such as sensitivity threshold and maximum stress, have been obtained from the simulation data. The above results indicate that the proposed concept offers a promising advancement in surface acoustic waves (SAW) based accelerometer devices, and could, therefore, be used for several practical applications in such areas as biomedical and sports wearable devices; vehicular design, including unmanned solutions; and industrial robotics, especially those where high-G forces are expected.
We study the effects of medium rotation on bulk acoustic wave (BAW) propagation. For a theoretical analysis of the BAW propagation characteristics, a motion equation for the plane harmonic waves propagating orthogonal to the rotation axis of the propagation medium was analytically resolved. We found that during medium rotation, the polarization of the waves becomes elliptical with the ratio of the polarization ellipse axes explicitly proportional to the angular velocity of the medium rotation, thereby opening the way for the design of sensitive elements (SE) for perspective angular motion sensors (AMS). Next, an analytical dependence of the SE informative parameter on the Poisson’s ratio of the acoustic duct material was obtained. The rotation effect on the dispersion of BAW propagation velocity was studied. Two approaches to the perspective SE design were proposed. An experimental study of a specially designed test assembly and SE model demonstrated high correlation with theoretical predictions and provided an estimate of a potential SE. Therefore, we believe that the study of acoustic wave propagation under nonclassical conditions is a promising direction for prospective solid-state AMS on based on BAW polarization effects design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.