The proper segregation of chromosomes during meiosis or mitosis requires the assembly of well organized spindles. In many organisms, meiotic spindles lack centrosomes. The formation of such acentrosomal spindles seems to involve first assembly or capture of microtubules (MTs) in a random pattern around the meiotic chromosomes and then parallel bundling and bipolar organization by the action of MT motors and other proteins. Here, we describe the structure, distribution, and function of KLP-18, a Caenorhabditis elegans Klp2 kinesin. Previous reports of Klp2 kinesins agree that it concentrates in spindles, but do not provide a clear view of its function. During prometaphase, metaphase, and anaphase, KLP-18 concentrates toward the poles in both meiotic and mitotic spindles. Depletion of KLP-18 by RNAmediated interference prevents parallel bundling/bipolar organization of the MTs that accumulate around female meiotic chromosomes. Hence, meiotic chromosome segregation fails, leading to haploid or aneuploid embryos. Subsequent assembly and function of centrosomal mitotic spindles is normal except when aberrant maternal chromatin is present. This suggests that although KLP-18 is critical for organizing chromosome-derived MTs into a parallel bipolar spindle, the order inherent in centrosome-derived astral MT arrays greatly reduces or eliminates the need for KLP-18 organizing activity in mitotic spindles.
INTRODUCTIONIn eukaryotes meiosis allows the exchange of genetic material between parental chromosomes and leads to the formation of haploid gametes. Reliable segregation of meiotic chromosomes depends on the correct assembly of microtubules (MTs) into a bipolar spindle. In most animal systems, female meiotic spindles lack centrosomes and their MT nucleating activity (Sawada and Schatten, 1988;Gard, 1992;Theurkauf and Hawley, 1992;Albertson and Thomson, 1993). Interestingly, vertebrate cultured cells in which centrosomes have been destroyed can use a centrosome-independent pathway to build a functional bipolar spindle (Khodjakov et al., 2000). These and other results suggest that although the diastral mode of spindle assembly dominates when centrosomes are present, chromatin-based spindle assembly can be used when centrosomes are absent. The question of how meiotic MTs become organized into a bipolar structure remains largely unanswered.Studies in Xenopus egg extracts have provided some important insights into acentrosomal spindle assembly. The observation that bipolar spindles can form around DNAcoated beads confirmed that chromatin itself can provide a platform for the nucleation, stabilization, and/or capture of MTs (Heald et al., 1996). Analysis of the effects of inactivating or depleting specific MT motor proteins from Xenopus extracts along with analysis of mutations that affect assembly of acentrosomal meiotic spindles in Drosophila (Merdes and Cleveland, 1997;Walczak et al., 1998;Walczak, 2000) have led to the following model for chromatin-based assembly of bipolar spindles. Chromatin-associated kinesins, e.g., X...