Reactive gliosis, in which astrocytes as well as other types of glial cells undergo massive proliferation, is a common hallmark of all brain pathologies. Brain-type fatty acid-binding protein (FABP7) is abundantly expressed in neural stem cells and astrocytes of developing brain, suggesting its role in differentiation and/or proliferation of glial cells through regulation of lipid metabolism and/or signaling. However, the role of FABP7 in proliferation of glial cells during reactive gliosis is unknown. In this study, we examined the expression of FABP7 in mouse cortical stab injury model and also the phenotype of FABP7-KO mice in glial cell proliferation. Western blotting showed that FABP7 expression was increased significantly in the injured cortex compared with the contralateral side. By immunohistochemistry, FABP7 was localized to GFAP+ astrocytes (21% of FABP7+ cells) and NG2+ oligodendrocyte progenitor cells (62%) in the normal cortex. In the injured cortex there was no change in the population of FABP7+/NG2+ cells, while there was a significant increase in FABP7+/GFAP+ cells. In the stab-injured cortex of FABP7-KO mice there was decrease in the total number of reactive astrocytes and in the number of BrdU+ astrocytes compared with wild-type mice. Primary cultured astrocytes from FABP7-KO mice also showed a significant decrease in proliferation and omega-3 fatty acid incorporation compared with wild-type astrocytes. Overall, these data suggest that FABP7 is involved in the proliferation of astrocytes by controlling cellular fatty acid homeostasis.Electronic supplementary materialThe online version of this article (doi:10.1007/s00418-011-0865-4) contains supplementary material, which is available to authorized users.
The sequential changes in the distribution of microtubules during germinal vesicle breakdown (GVBD), fertilization, and mitosis were investigated with antitubulin indirect immunofluorescence microscopy in several species of ascidian eggs (Molgula occidentalis, Ciona savignyi, and Halocynthia roretzi). These alterations in microtubule patterns were also correlated with observed cytoplasmic movements. A cytoplasmic latticework of microtubules was observed throughout meiosis. The unfertilized egg of M. occidentalis had a small meiotic spindle with wide poles; the poles became focused after egg activation. The other two species had more typical meiotic spindles before fertilization. At fertilization, a sperm aster first appeared near the cortex close to the vegetal pole. It enlarged into an unusual asymmetric aster associated with the egg cortex. The sperm aster rapidly grew after the formation of the second polar body, and it was displaced as far as the equatorial region, corresponding to the site of the myoplasmic crescent, the posterior half of the egg. The female pronucleus migrated to the male pronucleus at the center of the sperm aster. The microtubule latticework and the sperm aster disappeared towards the end of first interphase with only a small bipolar structure remaining until first mitosis. At mitosis the asters enlarged tremendously, while the mitotic spindle remained remarkably small. The two daughter nuclei remained near the site of cleavage even after division was complete. These results document the changes in microtubule patterns during maturation in Ascidian oocytes, demonstrate that the sperm contributes the active centrosome at fertilization, and reveal the presence of a mitotic apparatus at first division which has an unusually small spindle and huge asters.
Fatty acid-binding proteins (FABPs) bind and solubilize long-chain fatty acids, controlling intracellular lipid dynamics. FABP7 is expressed by astrocytes in the developing brain, and suggested to be involved in the control of astrocyte lipid homeostasis. In this study, we sought to examine the role of FABP7 in astrocytes, focusing on plasma membrane lipid raft function, which is important for receptor-mediated signal transduction in response to extracellular stimuli. In FABP7-knockout (KO) astrocytes, the ligand-dependent accumulation of Toll-like receptor 4 (TLR4) and glial cell-line-derived neurotrophic factor receptor alpha 1 into lipid raft was decreased, and the activation of mitogen-activated protein kinases and nuclear factor-κB was impaired after lipopolysaccharide (LPS) stimulation when compared with wild-type astrocytes. In addition, the expression of caveolin-1, not cavin-1, 2, 3, caveolin-2, and flotillin-1, was found to be decreased at the protein and transcriptional levels. FABP7 re-expression in FABP7-KO astrocytes rescued the decreased level of caveolin-1. Furthermore, caveolin-1-transfection into FABP7-KO astrocytes significantly increased TLR4 recruitment into lipid raft and tumor necrosis factor-α production after LPS stimulation. Taken together, these data suggest that FABP7 controls lipid raft function through the regulation of caveolin-1 expression and is involved in the response of astrocytes to the external stimuli. GLIA 2015;63:780-794.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.