SUMMARY
It is commonly assumed that the facial pit of pitvipers forms relatively sharp images and can detect small differences in environmental surface temperatures. We have visualized the temperature contrast images formed on the facial pit membrane using a detailed optical and heat transfer analysis, which includes heat transfer through the air in the pit chambers as well as via thermal infrared radiation. We find the image on the membrane to be poorly focused and of very low temperature contrast. Heat flow through the air in the pit chambers severely limits sensitivity, particularly for small animals with small facial pit chambers. The aperture of the facial pit appears to be larger than is optimal for detecting small targets such as prey at 0.5 m. Angular resolution (i.e. sharpness) and image strength and contrast vary complexly with the size of the pit opening. As a result, the patterns of natural background temperatures obscure prey items and other environmental features, creating false patterns. Consequently, snakes cannot simply target the strongest signal to strike prey. To account for observed behavioral capabilities, the sensory endings on the pit membrane apparently must respond to temperature contrasts of 0.001°C or less. While neural image sharpening likely enhances imaging performance, it appears important for foraging snakes to select ambush sites offering uniform backgrounds and strong thermal contrasts. As the ancestral facial pit was likely less sensitive than the current organ, objects with strong thermal signals, such as habitat features,were needed to drive the evolution of this remarkable sense.