Background
Microvesicles are membraned particles produced by different types of cells recently investigated for anticancer purposes. The current study aimed to investigate the effects of human bone marrow mesenchymal stem cell-derived microvesicles (BMSC-MVs) on the multiple myeloma cell line U266. BMSC-MVs were isolated from BMSCs via ultracentrifugation and characterized using transmission electron microscopy (TEM) and dynamic light scattering (DLS). U266 cells were treated with 15, 30, 60, and 120 µg/mL BMSC-MVs for three and seven days and the effects of treatment in terms of viability, cytotoxicity, and DNA damage were investigated via the MTT assay, lactate dehydrogenase (LDH) assay, and 8‑hydroxy-2’-deoxyguanosine (8‑OHdG) measurement, respectively. Moreover, the apoptosis rate of the U266 cells treated with 60 µg/mL BMSC-MVs was also assessed seven days following treatment via flow cytometry. Ultimately, the expression level of BCL2, BAX, and CCND1 by the U266 cells was examined seven days following treatment with 60 µg/mL BMSC-MVs using qRT-PCR.
Results
BMSC-MVs had an average size of ~ 410 nm. According to the MTT and LDH assays, BMSC-MV treatment reduced the U266 cell viability and mediated cytotoxic effects against them, respectively. Moreover, elevated 8‑OHdG levels following BMSC-MV treatment demonstrated a dose-dependent increase of DNA damage in the treated cells. BMSC-MV-treated U266 cells also exhibited an increased apoptosis rate after seven days of treatment. The expression level of BCL2 and CCND1 decreased in the treated cells whereas the BAX expression demonstrated an incremental pattern.
Conclusions
Our findings accentuate the therapeutic benefit of BMSC-MVs against the multiple myeloma cell line U266 and demonstrate how microvesicles could be of therapeutic advantage. Future in vivo studies could further corroborate these findings.