Background: 5-Fluorouracil (5-FU) has been commonly prescribed for patients with colorectal cancer (CRC), but resistance to 5-FU is one of the main reasons for failure in CRC. Recently, microRNAs (miRNAs) have been established as a means of reversing the dilemma by regulating signaling pathways involved in initiation and progression of CRC. However, how to safely and effectively deliver miRNA to target cells becomes a main challenge. Results: In this study, Engineered exosomes were exploited to simultaneously deliver an anticancer drug 5-FU and miR-21 inhibitor oligonucleotide (miR-21i) to Her2 expressing cancer cells. Purified engineered exosomes from the donor cells loaded with 5-FU and miR-21i via electroporation to introduce into 5-FU-resistant colorectal cancer cell line HCT-116 5FR. Furthermore, systematic administration of 5-FU and miR-21i loaded exosomes in tumor bearing mice indicated a significantly anti-tumor effect. The results showed that the engineered exosome-based 5-FU and miR-21i co-delivery system could efficiently facilitate cellular uptake and significantly down-regulate miR-21 expression in 5-FU resistant HCT-116 5FR cell lines. Consequently, the down-regulation of miR-21 induced cell cycle arrest, reduced tumor proliferation, increased apoptosis and rescued PTEN and hMSH2 expressions, regulatory targets of miR-21. Of particular importance was the significant reduction in tumor growth in a mouse model of colon cancer with systematic administration of the targeting miR-21i. More excitedly, the combinational delivery of miR-21i and 5-FU with the engineered exosomes effectively reverse drug resistance and significantly enhanced the cytotoxicity in 5-FU-resistant colon cancer cells, compared with the single treatment with either miR-21i or 5-FU. Conclusion: The strategy for co-delivering the functional small RNA and anticancer drug by exosomes foreshadows a potential approach to reverse the drug resistance in CRC and thus to enhance the efficacy of the cancer treatment.
Safe, efficient and cancer cell targeted delivery of CRISPR/Cas9 is important to increase the effectiveness of available cancer treatments. Although cancer derived exosomes offer significant advantages, the fact that it carries cancer related/inducing signaling molecules impedes them from being used as a reliable drug delivery vehicle. In this study, we report that normal epithelial cell-derived exosomes engineered to have HN3 (HN3LC9-293exo), target tumor cells as efficiently as that of the cancer cell-derived exosomes (C9HuH-7exo). HN3LC9-293exo were quickly absorbed by the recipient cancer cell in vitro. Anchoring HN3 to the membrane of the exosomes using LAMP2, made HN3LC9-293exo to specifically enter the GPC3+ HuH-7 cancer cells than the GPC3− LO2 cells in a co-culture model. Further, sgIQ 1.1 plasmids were loaded to exosomes and surprisingly, in combination with sorafenib, synergistic anti-proliferative and apoptotic effect of loaded HN3LC9-293exo was more than the loaded C9HuH-7exo. While cancer-derived exosomes might induce the drug resistance and tumor progression, normal HEK-293 cells-derived exosomes with modifications for precise cancer cell targeting like HN3LC9-293exo can act as better, safe and natural delivery systems to improve the efficacy of the cancer treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.