Crude tall oil (CTO) is the third largest by-product at kraft pulp and paper mills. Due the large presence of value-added fatty and resin acids, CTO has a huge valorization potential as a biobased, readily available, non-food, and low-cost biorefinery feedstock. The objective of this work was to present a method for the isolation of high-value linoleic acid (LA), an omega (ω)-6 essential fatty acid, from CTO using a combination of pretreatment, fractionation, and purification techniques. Following the distillation of CTO to separate the tall oil fatty acids (TOFAs) from CTO, LA was isolated and purified from TOFAs by urea complexation (UC) and low-temperature crystallization (LTC) in the temperature range between −7 and −15 °C. The crystallization yield of LA from CTO in that range was 7.8 w/w at 95.2% purity, with 3.8% w/w of ω-6 γ-linolenic acid (GLA) and 1.0% w/w of ω-3 α-linolenic (ALA) present as contaminants. This is the first report on the isolation of LA from CTO. The approach presented here can be applied to recover other valuable fatty acids. Furthermore, once the targeted fatty acid(s) are isolated, the rest of the TOFAs can be utilized for the production of biodiesel, biobased surfactants, or other valuable bioproducts.